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ABSTRACT 

 
As technology advances, charged particle beams with high current density become more and more 

popular. Obtaining of such beams has some peculiar features caused by the influence of inter-particle 
interaction, so called effect of spatial charge. In practice dynamics calculation of intensive charged particle 
beams is reduced to solution of non-linear self-consistent problem, involving equations of charged particle 
motion, the Poisson equation for electric field potential and equation of continuity. 
Keywords: spatial charge, dynamics of particles, simulation of physical processes, standing-wave accelerator, 
microparticle. 
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INTRODUCTION 
 

Nowadays the charged particle beams are used in commercial technologies for non-destructive 
testing, especially for non-destructive quality control of materials (Logatchov, et al., 2006), for processing of 
various materials, in medicine (Zhang, et al., 2013), in geological exploration, and in scientific researches. 
 

Nearly all important properties of vacuum devices and assemblies, which are applied for production 
and diagnostics of materials of nuclear power engineering, depend on the processing quality, spatial 
configuration, as well as on physics of wave processes upon their interaction with electromagnetic fields 
propagating in various materials (Drozdenko, & Magilin, 2007). Such researches facilitate development of new 
electrophysical devices for diagnostics and production of materials, improvement of existing and experimental 
methods of generation and diagnostics of charged particle beams. 

 
Charged particle fluxes are used in numerous electrophysical devices, primarily in cyclic and linear 

accelerators. Intensive development of accelerative engineering intended for fundamental physical researches 
in the field of high-energy physics and significant advances in other fields of science and engineering make it 
possible to apply in practice accelerators in industry and medicine (Zavadtzev, et al., 2011). 

 
The accelerators increase significantly efficiency of commercial production in such fields as 

radiography, radiation chemistry, sterilization of medical preparations, tools and food stuff, elemental 
activation analysis (Zavadtsev, et al., 2006). Significant economic benefit is achieved due to application of the 
accelerators in geology, for radiation survey of wells, in particular. 

 
The accelerative engineering is more and more widely applied in medicine (Volobuev, 2012). X-ray 

therapy enables combination of comparatively high treatment efficacy with possibility of mass services 
(Auditore, et al., 2006). 

 
The interest in application of linear electron accelerators in industry and medicine can be attributed 

to their numerous advantages. The most important are as follows: simplicity of input and output of 
accelerated particles, which makes it possible to obtain strictly oriented fast electron beams and braking 
radiation; easy adjustment of dose rate power and intensity; high dose rate power of braking radiation even at 
comparatively small (up to 10𝑀𝑒𝑉) energies of accelerated electrons. 

 
While considering motion of electron beams it is not sufficient to account only for external 

electromagnetic field created by certain exterior sources. The beam electrons create electric and magnetic self 
fields, which exert reverse impact on electron motion. Consideration for self consistent fields is required in the 
case of high density electron beams (Aleksandrov, & Kuzelev, 2007). 

 
The beams are considered to be intensive, if it is impossible to neglect the forces of Coulomb 

repulsion, created by self spatial charge. Such beams are an active element in electron and ion optical systems 
and charged particle accelerators, which are widely applied in practice, for instance, for melting and cutting of 
metals, sputtering and other important practical purposes. 

 
In general case the dynamics of charged particle beams is described self consistent set of equations. 

Taking into account contemporary issues of physics and engineering of high current beams it is necessary to 
apply and to develop new mathematical procedures of dynamics simulation of high spatial charge beam. At 
present the macroparticle method is most widely applied (Bobyleva, 2003). 

 
Numerical simulation of intensive charged particle beams is required upon investigation into the 

processes in various electrophysical devices. Numerical simulation methods assume development of a 
mathematical model, numerical algorithms and software packages for implementation of the developed 
algorithms (Sveshnikov, 2006). 
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EXPERIMENTAL 
 
Calculation of forces of beam spatial charge by numerical solution of the Poisson equation of two-dimensional 
grid 
 

While considering the issues of beam dynamics in accelerator at certain current and beam energy it 
becomes necessary to account for the forces of spatial charge of the beam itself. These forces depend on the 
charge density and beam configuration should be taken into account in the equations of particle motion at any 
time and in any location where a particle can exist. Therefore, the preset issue should be solved in 
approximation of self consistent field, when the electromagnetic forces, which determine the motion of 
particle flux, depend on the charge density or particle motion. 

 
The forces of beam spatial charge can be determined by the Poisson equation: 
 

∆Ф = −4𝜋𝜌 (1) 
 
and  
 

𝑬𝜌
′ = −𝑔𝑟𝑎𝑑Ф, (2) 

 
where Ф is the potential generated by the charge density 𝜌, and 𝑬𝜌

′  is the field intensity of spatial charge. 

While solving it is required to know distribution of charge density in the considered region at any time, that is, 
it becomes necessary to simulate charge particle beam. 
 

While developing the mathematical model it is necessary to account for characteristic features of the 
considered physical process and accelerator design. For the standing-wave accelerator this is, for instance, a 
complicated dependence of electromagnetic field on the coordinates in transit channel, comparatively 
moderate accelerator length, high rate of energy gaining by the particles and associated relativistic effects, fast 
generation of clusters from charged particles captured into the acceleration process. 

 
Since the spatial period of accelerating structure in initial accelerator portion , as well as amplitude 

and phase velocity of accelerating harmonics vary along the accelerator length, then the physical processes in 
such systems should be simulated in adiabatic approximation (Mayorov, 1974). Let us assume that all 
properties of the simulated system slowly vary in time and as a function of coordinate along accelerator. In 
such approximation in laboratory coordinates along the axis 𝑧 it is possible to highlight the region 𝑉, restricted 
by cross sections 𝑧 = 𝑍 and 𝑧 = 𝑍 + 𝛬, where 𝛬 is the spatial period of the system. Let us consider that the 
highlighted region moves along the axis 𝑧 at the speed equaling to average speed of particles in this region. As 
a consequence of spatial periodicity of physical processes in the considered system the charged beam can be 
simulated only in the region 𝑉 with periodic boundary conditions. On the basis of location of particles it is 
possible to determine the charge density distribution while considering the motion of a group of closely 
positioned particles integrated into macroparticles (Potter, 1975). Maintaining the ratio of macroparticle 
charge to weight the same as of actual physical particles, the motion of macroparticles will be described by the 
same equations. If cumulative charge of all macroparticles and average density of spatial charge are 
maintained the same as in the simulated system, then the self field and flux dynamics in the model and in 
physical system should coincide (Roshal’, 1979). 

 
Upon simulation of the flux by coarse particles the pair interactions in the model are sharply 

distorted, since the impingement frequency increases proportionally to the coefficient of coarsening at zero 
self size of macroparticles. In our case, while simulating impingement-free flux of charged particles, we will 
weaken short-range interactions due to the use of macroparticles of finite size. Then, each macroparticle is a 
"cloud" of spatial charge with the center relatively which the equations of motion are solved. Upon 
approaching of the "clouds" the interaction force between them increases, however, while penetrating into 
each other the "clouds" stop interactions between each other which leads to decrease in the short-range 
interactions. 

 
An important issue upon simulation of charged particles flux in linear accelerator is setting of initial 

distribution of macroparticles in phase space of coordinate--pulse. It is required to set such initial terms in the 
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model which would agree with actual properties of beam escaping from injector. Let us use "quiet start" 
approach, when coordinate and macroparticle velocity are set by means of regular procedure, so that charge 
density distribution in the model and configuration of simulated beam in initial acceleration region are the 
same as in actual accelerator. 

 
Therefore, mathematical model of charged particle flux is described by macroscopic Maxwell 

equations, medium and motion equations for actual flux particles. The obtained set of equations is non-linear, 
since the field of forces of spatial charge, acting on the flux particles, depends on charge density distribution, 
determined by motion of the particles. Electromagnetic fields acting on the particles in the resonators of 
complex shape are not expressed in analytical form, they are determined by numeric methods and preset in 
spreadsheets. 

 
Solution scheme of the set of equation of mathematical model is as follows: electromagnetic fields in 

overall aperture of transit channel are calculated and set as spreadsheets, then, the distribution of 
macroscopic charge density on discrete grid is determined at each integration step over time using position of 
macroparticles. Using the same grid, the Poisson equation is solved with the boundary conditions 
corresponding to physical interpretation. The obtained solution of the Poisson equation in the grid nodes is 
interpolated in order to find solution in intermediate points where macroparticles are positioned and the 
forces of spatial charge acting on them are calculated. While solving the motion equations with the calculated 
forces we determine the macroparticle position at the next time point and so forth. 

 
Determination of spatial beam charge field in the laboratory coordinates is as follows. Two-

dimensional rectangular grid in cylindrical coordinates 𝑟, 𝑧 is applied onto selected region of spatial periodicity 
𝑉. We assume that the particle flux is axially symmetrical, thus, the potential Ф and volumetric density 𝜌 as a 
function of 𝜑 is neglected. We assume that this grid moves synchronically with the particle flux and its velocity 
with regard to the laboratory coordinates us 𝛽𝑧. Then, at any time the static problem of potential 
determination can be solved using the Poisson equation. 
 

Five-point differential approximation of Eq. (1) on two-dimensional rectangular grid 𝑟, 𝑧 is as follows 
(Molokovsky, & Sushkov, 2005): 

 
1

ℎ𝑟
2

(Ф𝑖+1,𝑗 − 2Ф𝑖,𝑗 + Ф𝑖−1,𝑗) +
1

𝑟𝑖,𝑗

(Ф𝑖+1,𝑗 − Ф𝑖,𝑗) +
1

ℎ𝑧
2

(Ф𝑖,𝑗+1 − 2Ф𝑖,𝑗 + Ф𝑖,𝑗−1) = 4𝜋𝜌𝑖,𝑗 . (3) 

 
In Eq. (3) 0 < 𝑖 < 𝐼; 0 < 𝑗 < 𝐽; 𝐼 + 1 and 𝐽 + 1 is the number of nodes in the coordinates 𝑟, 𝑧; ℎ𝑟 and 

ℎ𝑧 are the grid increments in the coordinates 𝑟, 𝑧; 𝜌𝑖,𝑗  and Ф𝑖,𝑗 is the preset distribution of charge density and 

unknown potential in the grid nodes, respectively; 𝑟𝑖,𝑗  is the distance to the considered point. 

 
Let us assume that the particle beam travels in round waveguide, then the boundary conditions for 

Eq. (3) can be written as follows: 
 
Ф|𝑟=𝑎 = 0, where 𝑎 is the radius of transit channel, 
Ф|𝑧 = Ф|𝑧+𝛬, where 𝛬 is the beam spatial period, 
𝑑Ф

𝑑𝑟⁄ |𝑟=0 = 0 on the axis of transit channel. 

 
The set of Eq. (3) is solved as proposed elsewhere (Hockney, 1970), where discrete Fourier 

transformation of potential and density of spatial charge in the longitudinal coordinate 𝑧 is applied. 
 

Ф𝑖,𝑗 =
1

2
Ф̂𝑖

𝑐(0) +
1

2
Ф̂𝑖

𝑐 (
𝐽

2⁄ ) + ∑ {Ф̂𝑖
𝑐(𝑘) cos

2𝜋𝑘𝑗

𝐽
+ Ф̂𝑖

𝑠(𝑘) sin
2𝜋𝑘𝑗

𝐽
}

𝐽 2⁄ −1

𝑘=1

, (4) 

𝜌𝑖,𝑗 =
1

2
𝜌𝑖

𝑐(0) +
1

2
�̂�𝑖

𝑐 (
𝐽

2⁄ ) + ∑ {�̂�𝑖
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2𝜋𝑘𝑗

𝐽
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, (5) 

where 
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�̂�𝑖
𝑐(𝑘) =

2

𝐽
∑ 𝜌𝑖,𝑗 cos

2𝜋𝑘𝑗

𝐽

𝐽 2⁄ −1
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;  �̂�𝑖
𝑠(𝑘) =

2

𝐽
∑ 𝜌𝑖,𝑗 sin

2𝜋𝑘𝑗

𝐽

𝐽 2⁄ −1

𝑘=1

 

for all 0 ≤ 𝑘 ≤ 𝐽. 
 

Substituting Eq. (4) and Eq. (5) into Eq. (3) for each Fourier harmonics 𝑘 we obtain tri-diagonal matrix 

equation with respect to unknown vector {Ф̂𝑖
 (𝑘)}, which is solved by sweep method (Potter, 1975). After 

Fourier analysis in the coordinate 𝑧, we determine all required values of potential Ф𝑖,𝑗 in each grid node. 

 
Starting from known distribution of potential Ф𝑖,𝑗 in the considered region 𝑉 we can easily proceed to 

field intensity of spatial charge 𝑬𝜌
′  using Eq. (2). In order to apply this equation we should determine the 

potential derivatives in the coordinates 𝑧 and 𝑟. 
 

Attempting to eliminate the influence of calculation errors, related with the grid discretization, time 
and space in mathematical model, numerical differentiation of potential preset in the grid is performed with 
local smoothing by means of the least square method. If in the vicinity of angle (𝑗, 𝑖) the tabulated function 
Ф(𝑧, 𝑟) is approximated by the polynomial 

 
Ф0(𝜉, 𝜂) = 𝑎 + 𝑏𝜉 + 𝑐𝜼 + 𝑑𝜉𝜂 + 𝑒𝜉2 + 𝑓𝜂2, 

 

where 𝜉 =
𝑧 − 𝑧𝑖

ℎ𝑧
⁄ , 𝜂 =

𝑟 − 𝑟𝑖
ℎ𝑟

⁄ , then the potential derivatives can be expressed via the polynomial 

derivatives as follows:  
 

𝜕Ф

𝜕𝑧
=

1

ℎ𝑧

𝜕Ф0

𝜕𝜉
=

1

ℎ𝑧

(𝑏 + 𝑑𝜂 + 2𝑒𝜉),
𝜕Ф

𝜕𝑟
=

1

ℎ𝑟

𝜕Ф0

𝜕𝜂
=

1

ℎ𝑟

(𝑐 + 𝑑𝜉 + 2𝑓𝜂). (6) 

 
Therefore, using Eq. (2) with accounting for Eq. (6) it is possible to determine the field intensity of spatial 
charge in any point of the considered region 𝑉. Since the fields 𝐸𝜌𝑧

′  and 𝐸𝜌𝑟
′  are determined in self coordinates, 

then, passing to the laboratory coordinates, the equations of particle are solved on the basis of 
transformations for the fields (24) 
 

𝐸𝜌𝑧
 =  𝐸𝜌𝑧

′ ;  𝐸𝜌𝑟
′ = 𝛾𝐸𝜌𝑟

′ ;  𝐻𝜑
 = 𝛽𝑧𝐸𝜌𝑟

′ , 

 
where 𝛾 is the Lorentz factor. 
 

Calculation error of spatial charge forces is determined by test calculation of increase in electron 
beam radius under the action of spatial charge forces upon drift in free space. The disagreement does not 
exceed 1%. 
 
Approximation of clusters of accelerated particles by uniformly charged ellipsoid of rotation  
 

While designing accelerators of charged particles with the aim of determination of optimum beam 
motion, it is required to consider numerous variants, hence, at the stage of searching for optimum variant it 
would be reasonable to apply more ordinary model of charged beam. Such model can be successfully 
presented by uniformly charged ellipsoid of rotation, which approximates particle clusters of arbitrary shape 
(Vlasov, 1965). Since the rate of energy gaining by the beam in standing-wave accelerators and generation of 
particle clusters occur in fact in the first resonator, then application of this ordinary model is appropriate. 

 
Let us consider that the accelerated particles move along the accelerator axis in the form of separate 

clusters, following each other at equal distances 𝛬 (𝛬 is the beam spatial period). Since the cluster length is 
approximately 0.15𝛬, then the interaction between the clusters can be neglected. Let us assume that each 
particle cluster is a uniformly charged ellipsoid of rotation with the axis coinciding with the accelerator axis. 
Then the forces acting on separate electron from such cluster in laboratory cylindrical coordinates can be 
determined as follows (Akhiezer, et al., 1962): 

 
𝐹𝑟 = 4𝜋𝑒(1 − 𝛽𝑐

2)𝑀𝑟𝑟𝜌, 𝐹𝑧 = 4𝜋𝑒𝜌𝑀𝑧(𝑧 − 𝑍), 
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where 𝑒 is the electron charge, 𝛽𝑐  is the relative velocity of cluster center, 𝑟 is the particle deviation from the 
accelerator axis, 𝜌 is the volumetric charge density in the laboratory coordinates, 𝑀𝑟 and 𝑀𝑧 are shape 
coefficients in accompanying coordinates, 𝑍 is the coordinate of the cluster center. 
 

For ellipsoid with transversal half-axis 𝑅𝑀 and longitudinal half-axis 𝑎𝑧 the cluster shape coefficients 
are described as follows: 

 

𝑀𝑟 =
1 − 𝑀𝑧

2
=  

1

2
−

1 − 𝑙2

2𝑙3
(

1

2
𝑙𝑛

1 + 𝑙

1 − 𝑙
− 𝑙), 

where 𝑙 = √1 −
𝑅𝑀

2

𝑎𝑧
2 (1 − 𝛽𝑐

2). 

 
If the current of accelerated particles in the pulse is 𝐼, then the volumetric charge density can be determined 
as follows: 
 

𝜌 =
𝐼𝜆

𝑐

3

4𝜋𝑅𝑀
2 𝑎𝑧

, 

 
where 𝑐 is the velocity of light, λ is the generator wavelength. 
In relative coordinates dimensionless components of intensity of electric fields acting on an arbitrary particle 
with coordinates (𝜉, 𝜂) are written as follows: 
 

𝐴𝜉
𝑄 = 1.76 × 10−4

𝑀𝑧

𝜂𝑚𝑎𝑥
2 ∆𝜉𝑚𝑎𝑥

𝐼(𝜉 − 𝜉𝑐), 𝐴𝜂
𝑄 = 1.76 × 10−4

𝑀𝑟(1 − 𝛽𝑐
2)

𝜂𝑚𝑎𝑥
2 ∆𝜉𝑚𝑎𝑥

𝐼𝜂, 

 

where: 𝜂 =  
𝑟

𝜆
;  𝜉 =  

𝑧

𝜆
;  ∆𝜉𝑚𝑎𝑥 =

𝑎𝑧

𝜆
;  𝜂𝑚𝑎𝑥 =

𝑅𝑀

𝜆
;  𝐴𝜉

𝑄 =
𝑒𝜆

𝑚0𝑐2 𝐸𝜌𝑧;  𝐴𝜂
𝑄 =

𝑒𝜆

𝑚0𝑐2 𝐸𝜌𝑟 . 

 
Upon acceleration the sizes of particle cluster vary, mutual position of particles varies, hence, the 

forces of spatial charge acting on the particles also vary. At any time, knowing coordinates of particles in the 
cluster, it is possible to determine half-axes and center of ellipsoid. With this aim the motion equations of all 
particles are integrated simultaneously. Initially, the particle combination uniformly distributed along 𝑟 and 𝑧 
is preset and the motion equations of all particles up to the accelerator end are integrated without accounting 
for forces of spatial charge. The particles not included into the acceleration performance are not taken into 
account, thus, at the accelerator input there are only the particles in the acceleration performance. These 
particles determine the initial cluster sizes. Knowing pulse current and sizes of approximating ellipsoid, at each 
time integration step it is possible to calculate forces of spatial charge acting on each particle. 

 
At certain ratio of transversal to longitudinal half-axes of ellipsoid the path of particle in the ellipsoid 

center and at the distance of 𝑟 = 𝑅𝑀 to the axis will coincide with the continuous beam envelope. Prior to 
calculations of continuous beam dynamics it is required to select ellipsoid half-axes on the basis of test 
problem of beam divergence in drift space under the action of forces of spatial charge. As follows from the 

calculations, at 𝐼 = 1𝐴 and 
𝑎𝑧

𝑅𝑀
= 10 the calculation error does not exceed 5%. 

 
RESULTS 

  
The forces of spatial charge upon calculation of electron dynamics were accounted using two 

procedures for the case study of two-resonator standing-wave accelerator with the energy of 1 𝑀𝑒𝑉 and the 
current up to 500 𝑚𝐴 in the pulse. While providing radial motion of electrons, compact design of the 
accelerator prevents the use of conventional and well proven magnetic coils of aluminum foil. The problem of 
electron beam focusing was solved by means of two small focusing coils made of copper tubes. Cooling water 
flows inside the tube, which enables passing of high currents via winding and obtaining of the required reserve 
of magnetic field intensity in the accelerator axis. 

 
The circuit of injecting, accelerating and focusing systems of the accelerator is comprised of electron 

injector, injector lens, drift, two accelerating resonators and two focusing coils on both sides of accelerating 
unit. The injector lens is armored, wound by copper wire, and makes it possible to achieve the magnetic field 
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intensity in the axis up to 1000 𝑂𝑒. Power supply to the injector lens and each focusing coil is independent, 
which makes it possible to vary relative distribution of external magnetic field along the accelerator axis in 
wide range. 

 
The accelerating system is comprised of two identical hollow cylindrical resonators with the intensity 

of accelerating electric field of 200 𝑘𝑉/𝑐𝑚 at nominal current load. The resonators are not interconnected 
and supplied by high-frequency energy via three-decibel directional coupler, which determines the phase shift 
between the resonator fields. The injector is and electron gun with nearly parallel beam, energy of 40 𝑘𝑒𝑉 and 
current up to 5 𝐴 in pulse. 
 

Final results obtained by means of approximation of particle cluster by uniformly charged ellipsoid of 
rotation are illustrated in Fig. 1 in the form of beam envelope along accelerator (Curve 1). Dashed line depicts 
relative intensity distribution of magnetic field in the accelerator axis. 

 

 
Fig. 1. Beam envelope of overall accelerator. Curve (1) is obtained by approximation of particle cluster by uniformly 

charged ellipsoid of rotation, curve (2) – by numerical solution of the Poisson equations. The dashed line depicts relative 
intensity distribution of external magnetic field in the accelerator axis. 

 

The estimation method of the forces of spatial charge on the basis of simulation of particle cluster by 
uniformly charged ellipsoid of rotation is characterized by certain disadvantages, which lead to difference 
between the calculations of radial motion of particles and actual physical interpretation of beam motion in 
accelerator. From this point of view more accurate is the method of accounting for forces of spatial charge 
based on numerical solution of differential Poisson equation on rectangular grid. Using this method, radial 
dynamics of particles was calculated in the same accelerator with experimentally measured distribution of 
external magnetic field. The calculations were performed with the model comprised of 50 coarse particles on 
the 32 × 16 grid. The obtained results are illustrated in Fig. 1 (curve 2). 
 

DISCUSSION 
 

The estimation method of the forces of spatial charge on the basis of simulation of particle cluster by 
uniformly charged ellipsoid of rotation is characterized by certain disadvantages, which lead to difference 
between the calculations of radial motion of particles and actual physical interpretation of beam motion in 
accelerator. From this point of view more accurate is the method of accounting for forces of spatial charge 
based on numerical solution of differential Poisson equation on rectangular grid. 

 
While comparing calculation data obtained by the two various method of estimation of forces of 

spatial charge, it can be seen that the highest difference corresponds to the accelerator region where 
continuous particle beam moves. It is obvious that approximation of such beam by ellipsoid of rotation does 
not correspond to actual physical interpretation exactly in this point. After beam grouping into clusters both 
methods provide similar results. 
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The calculation results demonstrate that decrease in injection current improves the state of harness 
wiring and leads to decrease in the beam output radius, herewith the minimum corresponds to 0.2 𝐴. At lower 
current the beam is refocused which leads to certain increase in its radius. 
 

CONCLUSIONS 
 

The major conclusion derived from the obtained data is that under the acquired values of magnetic 
field intensities of focusing elements the wiring harness is possible along overall accelerator, herewith, the 
output beam diameter will not exceed 8 ÷ 9 𝑚𝑚, and the divergence is close to zero. These conclusions agree 
well with experimental data obtained at operating accelerator. The diameter of beam output spot does not 
exceed 8 𝑚𝑚, and the beam itself can be transported in vacuum without noticeable increase in its diameter. 

 
Taking into account increasing interest in intensive beam linear accelerator for application purposes, 

we are planning to continue the researches in the field of calculations of radial dynamics of charged particle 
fluxes with high density of spatial charge. 
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